引言
随着科技进步和全球市场一体化的形成,现在工业正面临产品的生命周期越来越短的问题,作为一种新产品开发的重要手段,快速成型能够迅速将设计思想转化为产品的现代先进制造技术。它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段,提高产品研发的效率。
俄罗斯专享会实业股份有限公司在钣金产品工业设计、产品快速成型、模具设计与制造、产品打样试制等积累了丰富经验,欢迎广大客户朋友咨询。
1 快速成型技术原理
在工业产品设计过程中,设计师往往希望能快速由三维CAD模型,得到产品的实物模型,快速成型技术可以满足这种需求。快速成型(Rapid Prototyping,RP)技术是一种基于离散/堆积成型思想的新型成型技术,它根据零件或物体的三维模型数据,快速、精确地制造出零件或物体的实体模型。快速成形过程可以分为离散和堆积两个过程。设计者借助三维CAD软件直接设计,或用实体反求工程(Reverse Engineering,RE)采集原型的几何形状、结构和材料的组合信息,得到样品的三维模型,离散过程将制件CAD模型沿某一方向(如Z方向)离散为一系列的二维层面(称为分层或切片),得到一系列的二维平面信息(截面信息);分层后的数据进行进一步处理,根据不同工艺的要求将这些信息与数控(CNC)成型技术相结合,生成CNC代码;在微机控制下,数控系统以平面加工方式,有序地连续加工出每个薄层,并使它们自动粘接而成型,从而构成一个与CAD模型相对应的三维实体模型,这就是堆积的过程。
2 关键技术
2.1 制造工艺
目前, 世界上已有几十种不同的快速成型工艺方法, 比较成熟的就有十余种。其中光固化成型法(Stereo Lithography Apparatus,SLA)、叠层实体制造法(Laminated Object Manufacturing,LOM)、熔融沉积法(Fused Deposition Modeling,FDM)、选择性激光烧结法(Selective Laser Sintering,SLS) 和3DP (Three Dimensional Printing and Gluing,也称3DPG)五种方法,在世界范围内应用最为广泛。
对于RP制造工艺的研究,一方面是在原有技术基础上进行改进,另一方面是研究新的成型技术。新的成型方法,如三维微结构制造、生物活性组织的工程化制造、激光三维内割技术、层片曝光方式等。
2.2 成型材料
成型材料是决定快速成型技术发展的基本要素之一,它直接影响到原型的精度、物理化学性能以及应用等。与RP 制造的4 个目标( 概念型、测试型、模具型、功能零件) 相适应, 使用的材料不同,概念型对材料成型精度和物理化学特性要求不高,主要要求成型速度快。如对光固化树脂,要求较低的临界曝光功率、较大的穿透深度和较低的粘度。测试型对于材料成型后的强度、刚度、耐温性、抗蚀性等有一定要求,以满足测试要求。如果用于装配测试,则对于材料成型的精度还有一定要求。模具型要求材料适应具体模具制造要求,如对于消失模铸造用原型,要求材料易于去除。快速功能零件要求材料具有较好的力学性能和化学性能。从解决的方法看,一个是研究专用材料以适应专门需要;另一个是根据用途分类,研究几类通用材料以适应多种需要。
目前应用较多的成型材料及其形态有液态树脂类、金属或陶瓷粉末类、纸、塑料薄膜或金属片( 箔) 类等,现有材料存在成本高、过程工艺要求高、制成成型的表面质量与内在性能还欠理想等不足。进一步的研究应包括开发成本与性能更好的新材料、开发可以直接制造最终产品的新材料、研究适宜快速成型工艺及后处理工艺的材料形态、探索特定形态成型材料的低成本制备技术、造型材料新工艺等。
2.3 加工精度
影响成型件精度的主要因素有两方面:一是由CAD模型转换成STL格式文件以及随后的切片处理所产生的误差;二是成型过程中制件翘曲变形,成型后制件吸入水分,以及由于温度和内应力变化等所造成的无法精确预计的变形。
为了解决第一类问题,正在研制直接切片软件和自适应切片软件。所谓直接切片是不将CAD模型转换成STL格式文件,而直接对CAD模型进行切片处理,得到模型的各截面层轮廓信息,从而可以减少三角面近似化带来的误差,所谓自适应切片是快速成型机能根据成型零件表面的曲率和斜率自动调整切片的厚度,从而得到高品质的光滑表面。
为解决第二类问题,正在研究、开发新的成型方法、新的成型材料及成型件表面处理方法,使成型过程中制件的翘曲变形小,成型后能长期稳定不变形。
2.4 与RP技术相关软件
软件是RP系统的灵魂,其中作为CAD到RP接口的数据转换和处理软件是其关键。不同CAD系统所采用的内部数据格式不同,RP系统无法一一适从,这就要求有一种中间数据格式既便RP系统接受又便于不同CAD系统生成,STL(Stereo Lithography)格式应运而生了,STL文件是用大量空间小三角形面片来近似逼近实体模型。由于STL格式具有易于转换、表示范围广、分层算法简单等特点,为大多数商用快速成形系统所采用,现己成为快速成形行业的工业标准。但是,STL模型也存在许多不足之处:
(1)精度不足。由于STL模型用大量小三角形面片来近似逼近CAD模型表面,造成STL模型对产品几何模型的描述存在精度损失,并且在对多张曲面进行三角化时,在曲面的相交处往往产生裂缝、孔洞、覆盖及相邻面片错位等缺陷。
(2)数据冗余度大。STL模型不包含拓扑信息,三角形面片的公用点、边单独存储,数据的冗余度大。随着网络时代的到来,STL模型数据冗余大的不足也使其不利于远程RF的数据传输,难以有效支持远程制造。
针对STL模型中存在的问题,人们试图从以下几方面来解决:
(1)对STL模型进行修复处理;
(2)将中性标准数据文件(如IGES,DXF,STEP等)直接应用于快速成形数据处理;
(3)寻求新的CAD/RP数据接口格式,除STL文件格式外,得到应用的数据格式有VRML;
(4)直接应用CAD软件进行分层处理;
(5)与反求工程相结合。
3 快速成型技术的应用
3.1 在外观及人机评价中的应用
新产品开发的设计阶段,虽然可借助设计图纸和计算机模拟,但并不能展现原型,往往难以做出正确和迅速的评价,设计师可以通过制作样机模型达到检验的目的。传统的模型制作中主要采用的是手工制作的方法,制作工序复杂,手工制作的样机模型不仅工期长,而且很难达到外观和结构设计要求的精确尺寸,因而其检查外观及人机设计合理性的功能大打折扣。快速成型设备制作的高精度、高品质样机与传统的手工模型相比较可以更直观地以实物的形式把设计师的创意反映出来,方便产品的外观造型和人机特性评价。
现在的快速成型加工得到的成型件都是单一颜色,颜色主要由材料决定,为了对产品色彩外观进行评价,有时需要手工涂色,随着彩色成型技术的发展,这方面的问题可以解决。人机评价主要包括成型件尺寸及操作宜人性,快速成型可以很好地满足这方面的要求。
3.2 在产品结构评价中的应用
通过快速成型制成的样机和实际产品一样是可装配的,所以它能直观地反映出结构设计合理与否,安装的难易程度,使结构工程师可以及早发现和解决问题。由于模具制造的费用一般很高,比较大的模具往往价值数十万乃至几百万,如果在模具开出后发现结构不合理或其他问题,其损失可想而知。而应用快速成型技术的样机制作可以把问题解决在开出模具之前,大大提高了产品开发的效率。
3.3 与反求工程结合
反求工程(Reverse Engineering,RE)也称逆向工程,就是用一定的测量手段对实物或模型进行测量,然后根据测量数据通过三维几何建模方法重建实物的CAD数字模型,从而实现产品设计与制造过程。对于大多数产品来说,可以在通用的三维CAD软件上设计出它们的三维模型,但是由于对某些因素,如对功能、工艺、外观等的考虑,一些零件的形状十分复杂,很难在CAD软件上设计出它们的实体模型,在这种情况下,可以通过对模型测量和数据处理,获得三维实体模型。
作为一种新产品开发以及消化、吸收先进技术的重要手段,反求工程和快速成型技术可以胜任消化外来技术成果的要求。对于已存在的实体模型,可以先通过反求工程,获取模型的三维实体,经过对三维模型处理后,使用快速成型技术,实现产品的快速复制,缩短了产品开发周期,大大提高产品的开发效率。
4 结语
快速成型技术可以大大缩短产品的开发周期,满足产品的个性化、多样化需求,在工业设计中得到广泛应用。但由于该技术的制作精度、强度和耐久性还不能满足工程实际的需要,加之设备的运行及制作成本高,一定程度上制约着RP技术的普遍推广。随着研究的不断深入,制约快速成型发展的因素会逐步解决,应用领域会不断得到拓展。
来源:网络
免责声明:版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将第一时间处理。
关键词:
上一篇:浅谈非标机械设备的外观设计与制造
下一篇:机床设备外壳防护罩的设计与加工